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Abstract—Energy storage systems (ESSs) are increasingly used
in power system optimization by deriving different ESS math-
ematical models. The most widely-used model is the piecewise
linear ESS model which utilizes non-convex constraints to repre-
sent the ESS power losses, resulting in challenging optimization
problems. To reduce the problem complexity, convex relaxation
models are often derived but may compromise the solution quality
of the underlying problems. This work investigates the exact and
relaxed versions of three different mathematical representations
of the piecewise linear ESS model, in terms of their solution
quality and execution efficiency. Towards this direction, the three
ESS models are incorporated into the unit commitment problem
which often violates the ESS relaxation exactness under ramping
constraints. Simulation results present (a) the execution times of
the exact and relaxed ESS models and (b) the optimality gap of
the relaxed models when the relaxation exactness is violated.

Index Terms—Convex relaxation, energy storage models, opti-
mization, unit commitment.

I. INTRODUCTION

NERGY Storage Systems (ESSs) is an emerging tech-

nology that can be used to compensate the negative
effects imposed by the uncontrollable generation of renewable
energy sources (RES) into the power systems. In general, ESSs
can provide several functionalities in the electricity sector
including the provision of grid services and the management
of energy resources for electricity cost reduction [1], [2]. Since
these ESSs functionalities allow an increased and effective
RES integration, the total energy storage capacity is expected
to rapidly grow according to the European Union target to
achieve climate-neutrality by 2050 [3].

Different mathematical models have been derived to repre-
sent ESSs in power system optimization problems, e.g., the
piecewise linear and quadratic models [4]. These models uses
non-convex constraints to represent the ESS power losses,
resulting in non-convex optimization problems which are hard
to solve. To reduce the problem complexity, relaxed ESS mod-
els are often derived by relaxing the non-convex constraints.
This work considers three different equivalent mathematical
representations of the widely-used piecewise linear model [4].
The first model deals with the non-convex equality constraints,
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where the ESS power losses are proportional to the absolute
value of the charging/discharging power, by relaxing them
to convex inequality constraints [4], [5]. The second model
represents the charging/discharging power using two separable
variables, eliminating the non-convex power losses constraint,
but non-convex complementarity constraints are introduced to
avoid simultaneous charging and discharging. Removing the
complementarity constraints yields the second relaxed model
[6]-[8]. The third model reformulates the complementarity
constraints using binary variables and then relaxing them to
take continuous values [9]. The relaxed ESS models can be
used in power system applications that require fast solutions,
e.g, using model predictive control, generating the optimal
solution when the ESSs relaxation exactness is satisfied. How-
ever, infeasible solutions are generated when the relaxation
exactness is violated.

The relaxed ESS models have been used to formulate
convex optimization problems, which can be fast and reliably
solved, to manage the ESSs charging/discharging power in
active distribution grids [5], [6] and transmission networks
[10]. Furthermore, the relaxed ESS models have been utilized
in Unit Commitment (UC) formulations [11], [12], which are
non-convex mixed-integer optimization problems, to reduce
their computational complexity by decreasing the number of
binary variables. The relaxation exactness is shown to hold in
[6], [11] under some sufficient conditions; however, the ESSs
relaxation can be non-exact in other formulations [10], [12].

This work presents the exact and relaxed versions of three
ESS models derived from the widely-used piecewise linear
model. The ESS models are integrated in a UC formula-
tion which often violates the ESS relaxation exactness under
ramping constraints of the conventional generating units. The
contributions of this work regards the investigation of the
exact and relaxed versions of three ESS models aiming to:
(a) elaborate on the relaxation tightness, (b) examine their
performance, in terms of execution time and solution accuracy,
in the context of the UC problem, and (c) provide practical
usage recommendations.

The rest of the paper is organized as follows. Section II
states the problem and Section III describes the ESS models.
The UC problem is formulated in Section IV and simulation
results are shown in Section V. Conclusions are given in
Section VI.



II. PROBLEM STATEMENT

The generic ESS model that is incorporated in optimization
problems is stated as

Ciy1p = Cop + AT(—P{?;@ - Pt]?k), vte T,kek, (la)

Cor=1Ir, Cj<Cip<Cy, VteT,kek, (1b)
- Pl < P <Py, Ve T ke K, (o)
where 7 = {1,...,T} denotes the considered time horizon

and AT the time-slot length in hours; IC = {1,..., K} denotes
the number of ESSs. Variables Cy i, P S and Pt .. denote the
ESS state- of-charge (SoC) in MWh, dlschargmg (Pt e = 0)
and charging (P, k < 0) power in MW, and power losses
in MW, respectwely Constraint (la) describes the variation
of the ESS SoC over time based on the charging/discharging
power and power losses. Constraints (1b) and (lc) provide
limits on the minimum and maximum SoC, C}, and C}, and
. . . —=d —c .
discharging and charging power, P, ;. and P, ,, respectively,
where [; denotes the initial SoC.

Different ESS models are derived in the literature based on
various functions that represent the ESS power losses in (1a),
e.g., the piecewise linear and quadratic models [4]. The most
widely-used model is the piecewise linear model given by

Pl =e|P5|, VteT,keKk, )

where e is a power losses coefficient. The absolute value in (2)
is used to avoid negative losses when Pfk < 0; therefore, the
power losses are represented by two piecewise linear segments.
The incorporation of the ESS model (1a)-(2) in optimization
formulations results in non-convex optimization problems,
which are hard to solve, because the constraint (2) is non-
convex. To reduce the problem complexity, the non-convex
constraint (2) can be relaxed to the convex constraint

ﬂ’>d kL VteT,kek. 3)

The solution of an optimization problem with the relaxed
ESS model (1a)-(1c), (3) is optimal when the relaxation is
exact i.e., the equality is attained in constraint (3); otherwise,
the solution is infeasible. Specifically, increased ESS power
losses are presented in the optimization problem when the re-
laxation is not exact, denoting that more energy is wasted than
prescribed by the losses function. This work investigates three
exact and relaxed ESS models derived from the piecewise-
linear model in (2). Next, the ESS models are presented.

III. PIECEWISE LINEAR ENERGY STORAGE MODELS

This section provides the exact and relaxed formulation of
three literature-based ESS models, derived from the widely-
used piecewise-linear model in (2), and presents the feasible
region of their ESS power losses.

A. Exact ESS Models

1) Exact Model E,: The first exact model [5] reformulates
the power losses function in (2) by defining the discharging
and charging power losses

PRt =elPS, PLS=(-€)P5 VteTkek, (@)

where ek and ej, denote the pos1t1ve discharging and charging
losses coefficients. Note that Pt k > 0 and Pth° < 0 when
Ptsk > 0 (discharging), while Pde < 0 and Pffkc > 0 when
Ptgk < 0 (charging). Therefore fhe power losses are defined

as the maximum between P A 4 and P ‘. k , given by

Ph = max(PLY PLS), vieTkek.  (5)

The non-convex constraint (5) can equivalently be reformu-
lated using binary variables, b, € {0,1}, and the big-M
method, yielding the model formulation, for all t € T, k € K

Constraints (1a) — (1b), (6a)
— P (1= bug) < PS5, < by P, (6b)
el PP, < Pl < el PP+ ME(1 —byy), (6¢)
_ethk<Ptk<_ekP + My, (6d)
where constants M > (ek+ek)Pt  and M} > (ek+ek)?d

Constraint (6b) ensures that bt ¢ = 1 when Pt . > 0and by p, =
0 when Ptsk <0, yielding P, k =ed P ’ and Pt = —ethSk,
according to constraints (6c) and (6d), respectlvely

2) Exact Model Es: The second exact ESS model replaces
Pfk with separate variables for the charging and discharging
power, Ptfk >0 and ng > 0, defined as

PPy =Pl — P, VeT kek. (7)

Using (7), the power losses in (4)-(5) are reformulated as

vte T, kek.
Vte T, kek.

L _ _dpd c pc
Py =ePiytepPrgs
d c
Py L Py,

(8a)
(8b)

The non-convex complementarity constraints (8b) ensure non-
simultaneous charglng and discharging, such that Pt . =
el Pty and Pl = efPf, when P2 > 0 and P2, < 0,
respectlvely Replacmg (7)-(8a) in (la) [4] yields the model
formulation [8], forallt € 7T, ke K

Ciy1x = Crp + AT(— Ptdk/nk + 5Pk (9a)
0< P <Py, 0< P <Py, (9b)
Constraints (1b), (8b), (9¢)

where constants 7 = 1/(1 + e{) and 5§ = 1 — £ denote the
discharging and charging efficiency coefficients. The comple-
mentarity constraints (8b) can be modelled using type 1 special
ordered set (SOS-1') constraints, as SOS-1(P/;, Pf,).

3) Exact Model E3: This model reformulates the comple-
mentarity constraints (8b) using binary variables [9], yielding

Constraints (1b), (9a) — (9b), (10a)
P < (1—b) Pl Vte T,kek, (10b)
Pi) < bt7th7k, b €{0,1}, VteT,kek. (10c)

IThe SOS-1 constraint involves a set of variables where at most one variable
in the set can take a non-zero value (see [13], Section 9.3). In this work,
SOS-1 constraints are handled automatically by the optimization solver, where
these constraints are treated directly by the branch-and-cut algorithm or are
reformulated using binary or integer variables [14].
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Fig. 1. Power losses of the three ESS models as a function of the charging/discharging power: (a) Model 1, (b) Model 2, and (c) Model 3. The blue solid
lines have the dual role of indicating the feasible region of the exact models and providing lower bounds on the power losses with respect to the relaxed
models. Similarly, the red dashed lines provide upper bounds on the power losses, such that the shaded areas are the feasible regions of the relaxed models.

B. Relaxed ESS Models

1) Relaxed Model R;: Deriving the convex hull of con-
straint (5) [5] yields the first relaxed model as

Constraints (1a) — (1c) (11a)
Pl > e, Pl > (=€f)PS, Vte T, kek, (11b)
Ph < Py + (P, +Pry), VteT,kek, (1lo)

where constant vz j, = (eﬁﬁi r—€s P i)/ (Ff’ kP 1) Affine
constraints (11b) and (11c) provide lower and upper bounds
on the power losses according to (5).

2) Relaxed Model Ry: Removing the complementarity con-
straints (8b) [7] yields the second convex model

Constraints (1b), (9a) — (9b). (12)

3) Relaxed Model R3: Relaxing the binary variables to take
continuous values in (10c) of Model E3 [9], yields

Constraints (1b), (9a) — (9b), (10b), (13a)

Pfe<biuPpg, 0<byp<1, VteT,kek. (I13b)

C. Relaxation Exactness and Tightness

The three exact ESS models are equivalent, always gen-
erating the optimal solution, because Models E5 and E3 are
reformulations of Model F-. The relaxed Model R, provides
the same solution with the exact models when equality is
attained (active constraint) in one of the two constraints in
(11b), otherwise increased power losses occur. Similarly, the
relaxed Models R, and R3 are exact when simultaneous
charging and discharging do not occur.

Fig. 1 depicts the feasible region of the power losses for both
the exact and relaxed versions of Models 1 - 3% as a function
of the charging/discharging power. As can be observed, the
relaxation of Models 1 and 3 is tight because the feasible
region of these relaxed models (R; and R3) is the convex hull
of the feasible region of the corresponding exact models (F/

2We will jointly refer to Models E; and R; as Model i, where i = {1, 2, 3}.

and F3). On the contrary, Model R is not tight as illustrated
in Fig. 1(b). Figs. 1(a) and 1(c) further indicate that Models
R; and R3 are equivalent in terms of power losses, since
they have the same feasible region. This observation can also
be verified mathematically. By replacing Pfk with (8a) and
setting Pfk = Pt‘fk — Ptf &> it can be shown that the constraints
of Model R;, i.e., (11a)-(11c), are the same with those of
Model Rs, i.e., (13a)-(13b).

IV. UNIT COMMITMENT

This section investigates the performance of the ESS models
by incorporating them in the UC problem. The UC problem
schedules the generating resources to satisfy the load demand
over a planning horizon at minimum cost. In this work, we
schedule the conventional generating units and ESSs to ensure
the power balance between generation and demand, including
ramping constraints of the generating units. Similarly with
[12], ramping constraints are included in the formulation
because they may cause the ESSs relaxation violation.

A. Objective function

The objective is to minimize the quadratic cost functions of
the generating units, given by

minimize AT Y > (Gg2tq + B PS, + A9 (P5,)%) (14)
teT geg

where G = {1, ..., G} denotes the set with the generating units
and variables Ptcfg and z;, € {0,1} denote the generating
power and on/off status of the generating unit g € G at time
t € T, respectively. Constants ¢, Bg, and 4, denote the
coefficients of the cost function of the generating unit g € G.
In objective (14), the fixed cost &, is included in the objective

only when the unit is on, z; 4 = 1.

B. Constraints

Power limits constraints ensure the operation of the generat-
ing units between their minimum and maximum power limits
—G .
(B?, Pg) when the units are on, z; 4 = 1, defined as

—G
zt7ngG < Pt% <z 4P vVt e T,Vgeg.

g

15)



According to constraint (15), Ptcfg =0 when z; 4, = 0.

The power balance between produced power from the
conventional units, ESSs discharging and charging power, and
load demand ﬁt, is stated as

ZPEQ+ZP£,€:D“ vteT.

g€y ke

(16)

Ramp-up constraints that limit the units power increment
between two consecutive time intervals are given by

Ptcv:g - Pﬁlﬁg = AT(R?”ZFLQ + REU(ZLQ — Zt—1,4))
—G
+Pq (1_zt,g)7 te [27T]7vg€g) (17)

where constants RY and R denote the generation upward
and start-up ramp rates. Similarly, ramp-down constraints are
set as

Ptcil,g - Pt(,;g < AT(szt,g + RgD(thl,g — Zt,4))

=G
+Py(1—2-14), t€[2,T],VgeQg, (18)

where constants R? and RgSD denote the generation down-
ward and shutdown ramp rates. Similarly with [12], start-up
and shutdown costs, minimum up and down times and reserves
are ignored because the building of the exact UC formulation
is out of the scope of this work.
The considered UC problem with an integrated ESS model

is summarized as

| minimize Objective (14)

’ { subject to: Constraints (15) — (18), ESS Model.

The following optimization formulations are derived by
incorporating the presented ESS models in Problem U:

¢ Problem Uf: Uses the exact ESS model, Model E;,

where i = {1, 2, 3}.
« Problem UZ: Uses the relaxed ESS model, Model R;,
where i = {1, 2, 3}.

Note that when Models 2 - 3 are used, then Pfk is replaced
by ng — Py}, in (16). Problem U¥ is a mixed-integer quadratic
program (MIQP) with SOS-1 constraints and the rest problems
are MIQPs. Problems U - UZ have a reduced number of
binary variables compared to Problems U¥ - UF, expecting
to result in lower execution times.

V. SIMULATION RESULTS

This section investigates the performance of the ESSs
models in the context of the UC problem (Problems U¥, U,
U%, UR, UF, and UL). All problems are coded in Matlab and
solved using optimization solver Gurobi [14], using the Matlab
interface for Gurobi 9.5.2, on a personal computer with § GB
RAM and an Intel Core-i5 3.2 GHz processor. To examine the
solution quality of Problems UZR, UE, and UL, which use the
relaxed ESS models, the optimality gap metric is considered

Solut. value — Optim. val
olut. value ptim VauexlOO%,

Optim. Gap = 19)

Optim. value

where the optimal value is obtained by solving the correspond-
ing problems with the exact ESSs models. The following cases
can be observed depending on the value of the optimality gap:

TABLE I
UNITS COEFFICIENTS

—~
P Py &g By g RJ =RY=RGV =RJU
Unit 1: 24 MW 50 MW 0.5 3 0.02 15 MW
Unit 2: 24 MW 50 MW 5 19.9 0.04 15 MW
TABLE II

ESSs COEFFICIENTS

—_ 7d P—
C. Ch I Py =P, ni=n
ESS1:. 1.0 MWh 4.0 MWh 3.0 MWh 5.0 MW 0.89
ESS 2: 3.0 MWh 6.5 MWh 5.5 MWh 5.5 MW 0.91
ESS 3: 0.5MWh 1.5MWh 1.0 MWh 1.5 MW 0.88
ESS 4. 0.5MWh 1.0MWh 0.5 MWh 0.5 MW 0.92
ESS 5. 0.5MWh 0.7 MWh 0.5 MWh 0.5 MW 0.89
ESS 6: 0.5MWh 0.7 MWh 0.5 MWh 0.5 MW 0.91
TABLE 111
LoAD DEMAND
t (h) 1 2 3 4 5 6 7 8 9 10 11 12

Dy (MW) 10 36 28 38 14 46.1 39 34 38 43 36 28

t (h) 13 14 15 16 17 18 19 20 21 22 23 24
D¢ (MW) 38 14 49 40 28 17 14 22 29 39 49 38
TABLE IV
CASE STUDIES
Cases 51 SQ S3 54 S5 56 S7
Total Units: 2 28 30 32 34 36 38
Total ESSs: 6 84 90 96 102 108 114
Load Magnitude: x1 x14 x15 x16 x17 x18 xI19

1) Optimality gap = 0: The optimal solution is generated if
the ESSs relaxation is exact.

2) Optimality gap < 0: A lower bound solution on the
optimal value is obtained, where the ESSs relaxation is
non-exact and the solution is infeasible.

A. Setup

The simulation setup is composed of 2 generating units and
6 ESSs presented in Tables I and II as well as the 24 hours
load demand shown in Table III, defined as case study S7. In
Table IV we consider case studies S; — S; with an increased
number of units and ESSs by (a) duplicating the units and
ESSs of study S; and (b) multiplying the load demand with
the load magnitude of Table IV. Note that we selected the
aforementioned case studies in a way to cause the violation of
the ESSs relaxation exactness in Problems U%, i = {1,2,3}.

B. Aggregate results

Fig. 2(a) shows the increasing execution times of Problems
UF and UE, i = {1,2, 3}, for the case studies S; — S7. Com-
paring the exact models, problems UZ and UZ achieve similar
execution times between them and better execution times
compared to UF. As expected, Problems UE, i = {1,2,3},
with the relaxed models have significantly lower execution
times compared to the exact models and Problem U has
the lowest times for S5 — S7. However, the exactness of the
relaxed models is violated in U{* — Uf under the selected
input data, resulting in the optimality gap shown in Fig. 2(b).
As expected from the analysis in Section III-C, Problem U2R
presents the largest negative optimality gap, while U and
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Fig. 2. Aggregate results: (a) execution time (s) and (b) optimality gap (%).
The execution times of all problems for S7 are less than 1 second.
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Fig. 3. Aggregate results for the case study S7 under variations of the load
demand: (a) execution time (s) and (b) optimality gap (%).

U1 yield the same optimality gap because Models R; and R3
are tight. Note that larger negative optimality gaps correspond
to higher artificial ESS power losses that cause a mismatch
between the estimated and actual SoC of the real ESSs, leading
to the violation of the maximum SoC limit. However, the
primary controllers integrated in real ESSs ensure the SoC
limits by limiting the charging/discharging power; but, this
action can cause a mismatch between scheduled and actual
operation of the real system.

The performance of the ESS models is further examined
under case study S7 with load demand variations. Specifically,
10 new case studies are created by adding a random value,
between [—1,1], in each time interval of the load. Fig. 3(a)
illustrates the execution times of the considered problems in
box-plot form, where the solver time limit was set to 650 s,
and Fig. 3(b) depicts the optimality gap of Problems U —UZ£.
Interestingly, the relaxation exactness is always violated in the
selected case studies; thus, the optimality gap in Fig. 3(b) is
always negative. The results indicate that Models E5 and Ej3
are preferable among the exact models because they yield the
lowest execution times. In addition, Model R; is preferable

among the relaxed models because is the fastest model and
presents the lowest optimality gap, in absolute value, when
the relaxation exactness is violated.

VI. CONCLUSIONS

This work examined the exact and relaxed versions of
three piecewise linear ESS models, in terms of their solution
quality and execution efficiency, by integrating them in the
UC problem. From the obtained results, the following usage
recommendations can be made. Exact Models E;-F3 are non-
convex, generating the optimal solution but resulting in high
execution times. Relaxed Models Ri-R3 are convex and can
be used (a) in applications that require fast solutions, e.g.,
real-time applications, by formulating convex optimization
problems or (b) in mixed-integer programs to reduce their
computational time. The relaxed models generate the optimal
solution when the relaxation exactness holds true; otherwise,
increased ESS losses occur that can cause a mismatch between
scheduled and actual operation of the real system. Models Es-
F5 and R, are preferable among the exact and relaxed models,
respectively, because they are the fastest models and Model R
yields the lowest optimality gap in absolute value. Future work
will investigate the impact of the relaxation violation on the
actual system operation.
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